問題1 水星は地球型惑星の一つである。平均比重は惑星内部構造を知る重要な手掛かりの一つである。

(1) 地球表面における重力加速度 9.8 m/s^2 を使って地球の平均比重を有効数字2桁まで求めなさい。ここで地球の半径 6400 km, 万有引力定数 $6.7 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ を用いて良い。

(2) 同様に水星表面における重力加速度 3.7 m/s^2, 半径 2440 km を使って水星の平均比重を有効数字2桁まで求めなさい。

(3) (1), (2)の結果から地球と水星の内部構造の違いを推察して、適宜図を用いて説明しなさい。

問2: 下図はある鉱物を一定歪速度 $6 \times 10^{-5}(1/a)$ で一軸圧縮した時の実験のデータである。

(1) この実験において歪が5%に達するまでに要した時間を求めなさい。

(2) 弾性限界より小さい歪の範囲を使って 1420°Cの場合について弾性定数を有効数字1桁まで求めなさい。

(3) 弾性限界より大きい歪の範囲を使って 1420°Cの場合について粘性率を有効数字1桁まで求めなさい。

(4) これらのデータから弾性定数、粘性率の温度依存性について分かったことを50字以内で説明しなさい。

出典：Poirier, Creep of crystals, Camb. Univ. Press
I-2

地球のマントルの中の温度構造について以下の問いに答えなさい。

問1 地球の内部は深くなるに伴い温度が高くなる。この原因を説明しなさい。

問2 地表付近の地温勾配は約30 K/km程度である。岩石の熱伝導率3 W/m/Kを使って、地表熱流量を求めなさい。

問3 深さ650 kmにおいて地震波速度が不連続的に増加することが知られている。これはマントルを構成する鉱物の相転移が原因だと考えられている。この深さに対応する圧力で鉱物が相転移する温度は高温高圧実験から約1700℃と求めている。一方でマントルの断熱温度勾配は約0.3 K/kmと推定されている。これらの値を使ってマントルのポテンシャル温度を計算しなさい。

問4 マントル最上部の熱境界層の厚さはプレートの厚さの目安である。地表の温度を20℃として問2、問3で示した値を使ってこの厚さを有効数字1桁まで求めなさい。
II-1

問１ 下記の温度圧力領域（a）～（h）に相当する変成相として最もふさわしいと思うものを下記のリストから選び、番号で答えなさい。また、（e）、（g）、（h）の変成相を代表する塩基性変成岩の和名と、特徴的な鉱物組合せを記しなさい。

(1) eclogite (2) hornfels (3) dacite (4) basanite (5) amphibolite (6) greenschist (7) trachyte (8) komatiite (9) zeolite (10) anorthosite (11) boninite (12) andalusite (13) epidote amphibolite (14) granulite (15) harzburgite (16) prehnite-pumpellyite (17) carbonatite (18) glauconaphane schist (19) kyanite (20) lherzolite

問２ 次に挙げる用語を適宜用いて、マグマの発生メカニズムについて説明しなさい。

減圧融解、プレート、中央海嶺、沈み込み帯、スラブ、ブルーム、流体、ホットスポット、融点、マントル、アセノスフェア、マントルウェッジ。
平成26年度（10月期）及び平成27年度 金沢大学大学院自然科学研究科 博士前期課程入学試験

問題用紙

<table>
<thead>
<tr>
<th>専攻名</th>
<th>自然システム学専攻（地球環境学コース）（一般選抜）</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験科目名</td>
<td>専門科目 地学</td>
</tr>
</tbody>
</table>

II-2

問1 横軸を温度、縦軸を圧力に取り、SiO\textsubscript{2} の相図を描きなさい。

問2 鉱物とは天然に産する固体結晶を指す。鉱物について以下の問いに答えなさい。

(1) 結晶の定義を述べなさい。

(2) 鉱物の分類における二つの分類基準について詳述しなさい。

問3 四つの結晶面が四回回反対称により結び付けられているとする。これら四つの面の法線の向きをステレオ投影図上に記入しなさい。尚、S 極投影であれば ○ で、N 極投影であれば × を用いること。

問4 正方晶系の単位格子一つ分を描き、(1 2 3) 面を図中に記入しなさい。
II-1

問1 下図は顕生代の地質年代表である。（ア）～（オ）の空欄を埋めなさい。

<table>
<thead>
<tr>
<th>級</th>
<th>代</th>
<th>世</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleozoic</td>
<td>古生代</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>デボン紀</td>
</tr>
<tr>
<td></td>
<td></td>
<td>インケ紀</td>
</tr>
<tr>
<td></td>
<td></td>
<td>キルリア紀</td>
</tr>
<tr>
<td>Mesozoic</td>
<td>中生代</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ジュラ紀</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ベルム紀</td>
</tr>
</tbody>
</table>
| | | イ

問2 地層の上下判定に利用できる指標を2例挙げてそれぞれ具体的に説明しなさい（図などを用いても良い）。

問3 ある地層から豊富に貝化石が産出する。化石を調べた結果いずれも現生種で、現在の生息水深が明らかになっている。この貝化石を産する地層が形成された古水深を推定する場合、どのような産状を示す貝化石を用いるべきか、理由とともに説明しなさい。
III-2

以下の文章を読んで次の問いに答えなさい。

天然に産する放射性同位体を利用した地質・環境試料の年代測定は放射年代測定法と呼ばれ、示準化石や古地磁気層序を利用する相対年代測定法と異なり、年代値が数値で算出される。放射性同位体には、K-Ar法に利用される40K、Rb-Sr法に利用される87Rb、複雑な壊変系を有するため様々な手法に利用される238Uなどがある。

問1 人間の体内にはある一定の割合でカリウムが含まれている。体重60kgの個体の体内にあるカリウムによる放射線量を求めなさい。ただし人体中のカリウム濃度は0.2wt%，全カリウムにうる40K当を0.01原子数%，40Kの壊変定数を5.5×10^{-10}/y，とする。解答の単位にはベクレルを用いること。

問2 238Uの壊変系列を利用した放射年代測定法を3つあげなさい。

問3 放射壊変は確率過程である。どのような確率密度分布に従う現象が答えなさい。