【1】以下の設問に答えなさい。

(1) ある酵素反応において、基質 S が生成物 P へ変換される。この酵素反応の触媒機構を以下の３つの語句を用いて説明しなさい。

活性部位、酵素基質複合体、遷移状態

(2) ある代謝反応経路において、W, X, Y, Z が中間代謝物、A, B, C は反応を触媒する酵素とする。つぎの情報から代謝反応経路の順序を推定しなさい。

(ア) 酵素 A の阻害剤を加えると W, Y, Z が蓄積する。
(イ) 酵素 B の阻害剤を加えると Z が蓄積する。
(ウ) 酵素 C の阻害剤を加えると W と Z が蓄積する。
(エ) 酵素 C の変異株は増殖に Y が必要である。

(3) 細胞内の代謝物質の濃度を調節するため、代謝反応は制御されている。代謝反応の制御機構として、(A)フィードバック阻害と(B)フィードバック抑制がある。この両機構の違いについて説明しなさい。
【2】50 L容の発酵槽（培地30 L）で、グルコースを単一の炭素源とする合成培地を用いた酵母の好気培養を行う。予備実験より、この酵母の比増殖速度は0.32 h⁻¹であり、グルコースに対する増殖収率は0.48であることがわかっている。この酵母を細胞濃度が20 g L⁻¹になるまで培養する場合、1時間あたりの発生熱量の最大値を求めなさい。ただし、酸素1 molあたりの発熱量は520 kJ mol⁻¹とし、グルコースは完全酸化されるとする。また、培地には充分量のグルコースが含まれており、常に酸素飽和の状態にあるとする。
【3】以下の設問に答えておきなさい。

(1) 3×3 行列の行列式について以下の設問に答えておきなさい。

(i) 行列式 $\det A$ の定義式、あるいはサラスの公式から、次の展開式を導きなさい。

$$
\det A = \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{vmatrix}
= a_{11} \det \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix} + a_{21} \det \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix} + a_{31} \det \begin{vmatrix}
 a_{22} & a_{23} \\
 a_{32} & a_{33}
\end{vmatrix}
$$

(ii) 2 つの列を入れ替えると行列式的符号が変わる」ことは、式 (※) を用いて次のように証明できる。

証明 式 (※) において、行列の第 2 列と第 3 列を入れ替えると、式中の各行列式的符号が変わり、その結果行列式的符号が変わる。他の列の入れ替えについても、展開する列を適当に選ぶことにより同様の議論ができる。よって 2 つの列を入れ替えると行列式の符号が変わることがわかる。□

以上を参考に、次の命題を証明しなさい。

(a) ある列がすべて 0 の場合、行列式は 0 となる。
(b) 2 つの列が同じ場合、行列式は 0 となる。
(c) ある列をすべて k 倍すると、行列式は k 倍となる。

(2) 次の行列について、A^2 を計算しなさい。

$$
A = \begin{bmatrix}
 \sqrt{2} & -\sqrt{2} \\
 \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{bmatrix}
$$
【4】以下の設問に答えなさい。

(1) 次の関数を x で微分しなさい。

$$y = \frac{\sqrt{1 - \sqrt{x}}}{1 + \sqrt{x}}$$

(2) 次の定積分を求めなさい。

$$\int_{1}^{\infty} \frac{dx}{x^2 \sqrt{x^2 - 1}}$$

(3) 次の連立方程式の一般解を求めなさい。

$$\begin{cases}
\frac{dy(x)}{dx} - 2 \frac{dz(x)}{dx} - 3z(x) = 0 \\
\frac{dy(x)}{dx} - 4y(x) - 3z(x) = 0
\end{cases}$$
【5】下図に示すプロセスでは、89.0 wt%のエタノール水溶液に純ベンゼンを加えた供給液を蒸留することで、缶出液として純粋なエタノールを毎時350 kg得ている。蒸留塔の塔頂からは、エタノール24.0 wt%，水22.0 wt%，ベンゼン54.0 wt%の混合液が留出するが、その下流の分離器で89.0 wt%のエタノール水溶液（分離液①）と純ベンゼン（分離液②）および純水（分離液③）に分けられる。また、分離器で得られるエタノール水溶液の2/3はリサイクルされて、原料のエタノール水溶液に加えられる。このときの供給液、留出液、分離液①～③の質量流量と、供給液の組成をそれぞれ求めてください。
【6】理想気体 1.00 mol を以下に示す 1～4 のプロセスにより、可逆的に変化させた。理想気体の定圧比熱は \(C_p = (5/2)R \) [J mol\(^{-1}\) K\(^{-1}\)] とし、\(R = 8.314 \) J mol\(^{-1}\) K\(^{-1}\) とする。

1. 状態 A (1.20 MPa, 393.15 K) から状態 B (1.20 MPa, 503.15 K) まで、定圧で加熱
2. 状態 B から状態 C (\(P_C \), 373.15 K) まで、定容で冷却
3. 状態 C から状態 D (1.05 MPa, 373.15 K) まで、定温で圧縮
4. 状態 D から状態 A まで、断熱で圧縮

(1) 各状態 (A, B, C, D) での体積 \(V_A, V_B, V_C, V_D \) および状態 C における圧力 \(P_C \) の値を求め、このプロセスの \(P-V \) 線図の概略を描きなさい。

(2) それぞれのプロセスにおける、系に加えられた熱量 \(Q \)、系に行った仕事 \(W \)、内部エネルギー変化 \(\Delta U \)、エンタルピー変化 \(\Delta H \) を求めなさい。また、このプロセス全体ではどうなるか求めなさい。解答用紙には以下の表を作成し、求めた値を記入すること。また、表とは別に算出過程を明らかにすること。

<table>
<thead>
<tr>
<th>プロセス</th>
<th>(Q) [J mol(^{-1})]</th>
<th>(W) [J mol(^{-1})]</th>
<th>(\Delta U) [J mol(^{-1})]</th>
<th>(\Delta H) [J mol(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プロセス全体</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
【7】半径 \(R \) の水平円管内を非圧縮性流体が定常、層流で流れる場合、管軸方向の速度 \(u \) は次の微分方程式により与えられる。以下の設問に答えなさい。

\[
\frac{1}{\mu} \frac{d}{dr} \left(r \frac{du}{dr} \right) = \frac{dp}{dz}
\]

ここで、\(\mu \) は粘度、\(r \) は半径方向距離、\(z \) は円管の軸方向距離、\(p \) は静圧である。

(1) この微分方程式を解いて、円管内の速度分布を表わす式を導出しなさい。

(2) (1)で求めた速度分布式を用いて、次の Hagen-Poiseuille の式を導出しなさい。

\[
\Delta p = \frac{8 \mu L Q}{\pi R^4}
\]

ここで、\(\Delta p \) は圧力損失、\(L \) は管長、\(Q \) は体積流量である。
【8】溶液中の溶質AとBが反応して、反応分子A・Bを形成したのち物質Pを生成する以下の反応過程を考える。

\[
A + B \xrightarrow{k_1} A \cdot B \\
A \cdot B \xrightarrow{k_2} P
\]

ここで、\(k_1\), \(k_2\)はそれぞれの基反応の反応速度定数である。また、各成分の濃度を[A], [B], [A-B], [P]と表記する。

(1) 反応分子A・Bの反応速度を表す式を示しなさい。
(2) 定常状態近似を適用できるとして、A + B → Pの反応速度定数を求めなさい。
(3) [B]→[A]のとき、反応開始から時間\(t\)経過後の[A]を求めなさい。ただし、t = 0でのAおよびBの濃度を[A]_0, [B]_0とする。
(4) 拡散律速度反応速度定数は次式で与えられる。

\[
k = 4\pi R_{AB} (D_a + D_b)
\]

ここで、\(R_{AB}\)は溶質Aと溶質Bの半径\(R_a, R_b\)の和であり、\(D_a, D_b\)は溶媒の拡散係数である。また、半径\(R\)の分子に対する拡散係数\(D\)は、以下のStokes-Einsteinの式で与えられる。

\[
D = \frac{k_BT}{6\pi\mu R}
\]

ここで、\(k_B = 1.38 \times 10^{-23}\) J K\(^{-1}\), \(T\)は温度, \(\mu\)は溶媒の粘度である。20℃の水中でLi⁺とCl⁻が拡散律反応とするとして、モル当たりの反応速度定数（単位 dm\(^3\) mol\(^{-1}\) s\(^{-1}\)）を求めなさい。ただし Li⁺とCl⁻の半径をそれぞれ 0.24 nm, 0.12 nm, 20℃の水の粘度を 1.00 \times 10^{-3} Pa s, アゴアドロ数を \(N_A = 6.02 \times 10^{23}\) mol\(^{-1}\)とする。
【9】カルボニル化合物は水と可逆的に反応して、水和物を与える。
(1) アセトアルデヒドおよびクロロアセトアルデヒドの水和反応式を示しなさい。
(2) アセトアルデヒドより、クロロアセトアルデヒドの平衡定数が大きい理由を述べなさい。
(3) ベンズアルデヒドの平衡定数が p-ニトロベンズアルデヒドより小さい理由を述べなさい。
なお、カルボニル化合物の水和反応の平衡定数は以下の表に示すとおりである。

<table>
<thead>
<tr>
<th>カルボニル化合物</th>
<th>平衡定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃CHO</td>
<td>1.06</td>
</tr>
<tr>
<td>CICH₂CHO</td>
<td>17</td>
</tr>
<tr>
<td>C₆H₅CHO</td>
<td>0.008</td>
</tr>
<tr>
<td>p-NO₂C₆H₅CHO</td>
<td>0.17</td>
</tr>
</tbody>
</table>