2019
化学　解答例
(1)
(a) 温度、圧力の変化におけるギブズエネルギーの変化は \(dG = VdP - SdT \) と表される。温度一定より \(dT = 0 \) であるから、\(dG = VdP \)
理想気体では、\(PV = RT \) より
\[
dG = \frac{RT}{P} dP
\]
圧力が \(P_1 \) から \(P_2 \) に変化したときのギブズエネルギー変化は以下の式で表される。
\[
\Delta G = \int_{P_1}^{P_2} \frac{RT}{P} dP = RT \ln \frac{P_2}{P_1}
\]
(b) \(a \) 分子間相互作用（引力）、\(b \) 排除体積（斥力）

(c) \(P(V-b) = RT \) より、\(V = \frac{RT}{P} + b \)
\[
\Delta G_r = \int_{P_1}^{P_2} \left(\frac{RT}{P} + b \right) dP = RT \ln \frac{P_2}{P_1} + b(P_2 - P_1)
\]
\[
\Delta G_i = RT \ln \frac{P_2}{P_1} + b(P_2 - P_1)
\]
上式と問い(a)より
\[
\Delta G_r = \Delta G_i + b(P_2 - P_1)
\]
また \(b(P_2 - P_1) > 0 \) であるから、理想気体よりギブズエネルギー変化は大きくなる。

(2)
(a) 箱の中では
\[
-\frac{\hbar^2}{8\pi^2 m} \frac{d^2}{dx^2} \psi_n = E_n \psi_n \quad \psi_n = A \sin(n\pi x / a)
\]
左辺 \[
-\frac{\hbar^2}{8\pi^2 m} \frac{d^2}{dx^2} A \sin(n\pi x / a) = \frac{n^2 \hbar^2}{8ma^2} A \sin(n\pi x / a) = \frac{n^2 \hbar^2}{8ma^2} \psi_n = E_n \psi_n
\]
よって
\[
E_n = \frac{n^2 \hbar^2}{8ma^2}
\]
(b) \(n = 1 \) \((n = 0 \text{ だと波動関数が常に } 0 \text{ になる}) \)

(c) 規格化条件より
\[
\int_{-\infty}^{\infty} |\psi_n|^2 dx = A^2 \int_0^a \sin^2 \frac{n\pi x}{a} dx = \frac{a}{2} A^2 = 1
\]
よって
\[
A = \sqrt{\frac{2}{a}}
\]
積分部分
\[
\int_{-\infty}^{+\infty} \psi_k \psi_l \, dx = \frac{2}{a} \int_0^a \sin \left(\frac{k \pi x}{a} \right) \sin \left(\frac{l \pi x}{a} \right) \, dx = \frac{1}{a} \int_0^a \left(\cos \left(\frac{(k-l) \pi x}{a} \right) - \cos \left(\frac{(k+l) \pi x}{a} \right) \right) \, dx
\]

\[
\frac{1}{(k-l) \pi} \left[\sin \left(\frac{(k-l) \pi x}{a} \right) \right]^a_0 - \frac{1}{(k+l) \pi} \left[\sin \left(\frac{(k+l) \pi x}{a} \right) \right]^a_0 = 0
\]
直交関係が示された。

(3) (a) 電子などスピンが半整数の粒子のこと。
フェルミ粒子は、2つ以上の粒子が同じ粒子状態を占めることができない。

(b) 反応速度定数と温度の関係を表す式で、次のように表される。
\[
k = A \exp \left(- \frac{E_a}{RT} \right)
\]

\(k \) 反応速度定数 \(A \) 頻度因子 \(E_a \) 活性化エネルギー \(R \) 気体定数 \(T \) 絶対温度

(c) 電子のスピン角運動量と電子の軌道角運動量との相互作用のこと。
解答例

（1）(a) アソニアは分子間に水素結合が形成されるため。
(b) (ア) NH₃OH (イ) NO (ウ) N₂O (エ) NO₂⁻ (オ) NO₃⁻
(c) 硝酸
(d) (ア) [PMoⅥ₁₂O₄₀]³⁻ (イ) FeⅣFeⅢ₆O₄
(e) N₂は、N–N 結合が強く、結合を切るための活性化エネルギーが高いため。触媒を用いても通常の律速段階は N–N 結合の切断であり、速度論的に不活性な窒素を活性化させるために高温条件が必要である。また、反応式は、N₂ + 3 H₂ → 2 NH₃ で、発熱的であるから、高温条件下では反応の平衡定数が著しく低くなる。収率低下を補うために、高圧条件にすることで平衡を生成系に偏らせることが必要である。

(2) (a) 置換型固溶体 (イ) 侵入型固溶体
(b) 立方最密充填構造
(c) ナトリウムの配位数: 6、第二近接イオンの位置を占めるカチオン数: 6 個
セシウムの配位数: 8、第二近接イオンの位置を占めるカチオン数: 6 個
(d) (ア) ナトリウムと塩素から塩化ナトリウムが生成する反応は発熱、塩素原子が電子を受け取る反応は発熱
(イ) −411 − 107 − 496 − 121 − (−349) = −786 kJ/mol

(3) (a) [Ar](3d)⁵ (イ) [Ar](3d)⁶(4s)² (ウ) [Ar](3d)¹⁰(4s)¹ (エ) [Kr](4d)¹⁰
(b) (ア)

(イ)
(1)

(a) o-xylene (1,2-dimethylbenzene)

(b) 4

(c) $H^1 < H^2 < H^3$

(d)

(e)
チオエステルの硫黄の非共有電子対は 3p 軌道にあり, 2p 軌道にない。また, 3p 軌道は大きいため, カルボニル炭素原子の 2p 軌道と効率よく重ならず, その結果, チオエステルはカルボニル基との共役が弱い。

そのため, 加水分解における律速段階（カルボニル基への求核付加攻撃の段階）において, 硫黄の場合の方がカルボニル基の反応性を低下させるカルボニル炭素上への非局在化が弱いため, 反応が速くなる。さらに, 四面体中間体から脱離の段階でも, アルコキシドよりもチオラートの方が, 脱離が容易になるためである。
(d)

\[
\begin{align*}
\text{4} &\xrightarrow{\text{Enz}} \text{5 (mevalonic acid)} \\
\text{5} &\xrightarrow{\text{Enz}} \text{6 (mevalonic acid)} \\
\end{align*}
\]

(e)

\[
\begin{align*}
\text{7 (dimethylallyl diphosphate)} &\xrightarrow{\text{Enz}} \text{8 (geranyl diphosphate)} \\
\end{align*}
\]

(f)

\[
\begin{align*}
\text{8 (geranyl diphosphate)} &\xrightarrow{\text{Enz}} \text{9 (limonene)} \\
\end{align*}
\]

(g)
4

(1)
(a) 物質収支：\(C_{\text{H}_2\text{SO}_4} = [\text{H}_2\text{SO}_4] + [\text{HSO}_4^-] + [\text{SO}_4^{2-}] \)
ここで、題意より\(\text{H}_2\text{SO}_4 \)を完全解離とすると，
\(C_{\text{H}_2\text{SO}_4} = [\text{HSO}_4^-] + [\text{SO}_4^{2-}] \) (i)
電荷収支：\([\text{H}^+] = [\text{OH}^-] + [\text{HSO}_4^-] + 2[\text{SO}_4^{2-}] \) (ii)
(b) \(K_a = [\text{H}^+][\text{SO}_4^{2-}]/[\text{HSO}_4^-] \) (iii)
(ii)において酸性では\([\text{H}^+] \gg [\text{OH}^-] \)より，
\([\text{H}^+] = [\text{HSO}_4^-] + 2[\text{SO}_4^{2-}] \) (iv)
(i),(iv)より，\([\text{HSO}_4^-] = 2 C_{\text{H}_2\text{SO}_4} - [\text{H}^+] \) (v)
\([\text{SO}_4^{2-}] = [\text{H}^+] - C_{\text{H}_2\text{SO}_4} \) (vi)
(v),(vi)を(iii)に代入すると，
\[
K_a = [\text{H}^+]([\text{H}^+] - C_{\text{H}_2\text{SO}_4})/(2 C_{\text{H}_2\text{SO}_4} - [\text{H}^+])
\]
\[
[\text{H}^+]^2 + (K_a - C_{\text{H}_2\text{SO}_4})[\text{H}^+] - 2 C_{\text{H}_2\text{SO}_4} K_a = 0
\]
ここで，\(C_{\text{H}_2\text{SO}_4} = 1.0 \times 10^{-2} \text{ mol L}^{-1} \), \(K_a = 1.0 \times 10^{-2} \text{ mol L}^{-1} \)より，
\[
[\text{H}^+]^2 - 2 C_{\text{H}_2\text{SO}_4} K_a
\]
\[
\therefore \text{pH} = -\log [\text{H}^+] = -\log (2 C_{\text{H}_2\text{SO}_4} K_a)^{1/2} = -(\log 2)/2 + 2.00 = 1.85
\]
(c) \(K_a \)は各化学種の濃度の代わりに活量（活量係数×濃度）を用いて定義され，化学種\(X \)の活量係数を\(\gamma_X \)とすると，\(K_a = K_a^0 \times \gamma_{\text{HSO}_4^-} \times \gamma_{\text{SO}_4^{2-}} \)となる。

(2)
(a) 溶液中のイオン種は，0.10 mol L\(^{-1}\) Na\(^+\)，0.050 mol L\(^{-1}\) NO\(_3^-\)，0.050 mol L\(^{-1}\) Cl\(^-\)より，
\[
\therefore I = 1/2 \times (0.10 \times 1 \times 0.050 \times (-1)^2 + 0.050 \times (-1)^2) = 0.10 \text{ mol L}^{-1}
\]
(b) \(K_{\text{sp}} = [\text{Ag}^+][\text{Cl}^-] = S(\gamma_{\text{S}^+} C_{\text{NaCl}}) \)
\(C_{\text{NaCl}} \gg S \)では，\(S = K_{\text{sp}}/C_{\text{NaCl}} = (1.8 \times 10^{-10})/((0.20 \times 0.30)/(100 + 0.30)) \)
\[
\therefore S = 3.0 \times 10^{-7} \text{ mol L}^{-1}
\]
(c) \(S = [\text{Ag}^+] + [\text{AgCl(aq)}] + [\text{AgCl}^2^-] + [\text{AgCl}_2^-] + [\text{AgCl}_3^-] \)
\[
\therefore S = K_{\text{sp}} (1/[\text{Cl}^-] + \beta_1 + \beta_2/[\text{Cl}^-] + \beta_3/[\text{Cl}^-]^2 + \beta_4/[\text{Cl}^-]^3) \)
(3) 容量分析において標準液（滴定剤）として用いる溶液の力価（ファクター）を、標準物質から調製された濃度既知の一次標準液を用いた滴定実験によって正確に定めること。

(b) 複数の溶質を含む混合溶液から沈殿が生成する際、単独であれば沈殿しないはずの溶質が、主沈殿に吸着や吸収によって取り込まれて沈殿する現象。

(c) 溶媒抽出反応において、濃度や反応条件に依存して様々な化学形で存在しうる溶質の有機相における全濃度を水相中の全濃度で割った値。

(d) 物質による光の吸収に関する法則で、入射光強度 I_0 と透過光強度 I との比の対数が光路長 l, 濃度 c, モル吸光係数 $ε$ に比例する関係を示し、吸光度 $A = \log(I/I_0) = εcl$ の関係式で表される。
5 答解例

(1) (a) 核種 A: ^{11}\text{C}, 核種 B: ^{11}\text{B}
(b) $\beta^+\ $壊変
(c) この質量域において核種 A は核種 B に β^+ 壊変するということは、核内の陽子が中性子に変わる方がエネルギー的に安定するので、陽子場の最高被占軌道が中性子場の最高被占軌道より高いことがわかる。

(2)

\[
Q_{EC} = 1.50 \text{ MeV} \quad Q_{\beta^-} = 1.31 \text{ MeV}
\]

(3) (ア) ③ 誘導放射性核種、(イ) ④ 消滅放射性核種、(ウ) ② 二次放射性核種、
(エ) ① 一次放射性核種
解答例： ^{3}\text{H}（宇宙線との核反応で生成し、雨水に含まれる）
^{26}\text{Al}（半減期が 71 万年程度と短いので、地球にあったものも現在は消滅している。）
^{220}\text{Rn}（Th-232 の娘核種なので、トリウムを含む土壌から放出する。）

(4) (a) radioactivity: 放射能、放射性物質などと訳される。放射能とは放射線を出す能力または強度のことである。強度としてベクレル (Bq) の単位が用いられる。1 Bq は 1 秒間に原子が 1 個壊変することを意味する。

(b) radioactive equilibrium: 放射平衡と訳され、親核種とそれが壊変して生成する娘核種の間の放射能比 (物質量比) が一定になって時間がたっても変化しない状態。

(c) superheavy element: 超重元素のことを示し、現在の定義では 104 番以降の元素を指す。
104 番元素ラザホージウム (元素記号: Rf) から 118 番元素オガネソン (元素記号: Og) まで確認されている。

(d) pick—up reaction: 低エネルギー核反応の一つで、入射粒子が標的核の核子を吸収してより重い粒子となって放出する核反応。直接反応に分類される。

(e) emanation: 放射性希ガス元素を指す。おもにラドンを指すことが多い。

(f) magic number: 魔法数とも呼ばれ、原子核がその数の中性子または陽子を持つことで、核種として近傍の核に比べて安定化する。これは原子核の殻構造を反映している。2, 8, 20, 28, 50, 82, 126 などがある。
解答例

（1）
(a) 細菌細胞壁を溶かす溶菌酵素。細胞壁ペプチドグリカンのN-アセチルムラミン酸とN-アセチルグルコサミン間のβ(1→4)グリコシド結合を加水分解する。
(b) 反応名：スプライシング
成熟真核 mRNAは5'末端にキャップ構造、3'末端にポリアデニーテールを持ち安定性が高いが、原核 mRNAにはこれがない、ヌクレアーゼによる分解を受けやすい。また、多くの原核 mRNAは複数の構造遺伝子を含むポリシストロン型で、一般的な成熟真核 mRNAは単一構造遺伝子を含むモノシストロン型である。
(c) プロモーターとは、構造遺伝子の上流側に存在し、RNA polymeraseが結合するDNA上の保存配列で、転写開始前複合体を形成する場所である。
転写酵素名：RNA polymerase (RNAP)
(d) ラクトース（乳糖）が存在しないときは lac repressor が lac operator に結合し、lac promoter への RNAP の結合を妨害する。ラクトースが存在すると lac repressor に結合し、repressorがoperatorから解離するため、RNAPがpromoterに結合し、低グルコース濃度下で下流の遺伝子の転写が活性化される。
(e) 活性なリゾチームが発現すると、宿主大腸菌が発現したリゾチームにより溶菌し、タンパク質合成が停止するため高発現できないが、酵母の細胞壁はリゾチームでは分解されないため高発現が可能となる。

（2）
(a) 2本鎖 DNA では、ワトソン・クリック塩基対であるアデニンとチミン、グアニンとシトシンが対合し水素結合を形成する。
(b) DNA polymerase の鎖伸長反応を利用し、2',3'-ジヌクレオシド三リン酸により polymerase 反応をランダムに停止させた鎖長の異なる DNA 断片混合物を合成し、これを電気泳動で分離して配列を解析する方法。
(c) Southern blot は DNA 断片を電気泳動で分離後にアルカリ変性、膜に転写し、目的DNAに相補的なオリゴヌクレオチドプローブを用いて DNA 断片を検出する方法で、Western blot はタンパク質を電気泳動で分離後、膜に転写し、目的タンパク質の抗体を用いて検出する方法。
(d) 2次構造とは、ポリペプチド分子内または分子間において、主鎖ペプチド結合間の水素結合で形成される立体構造で、分子内のαヘリックスやペプチド鎖間のβシートが代表的である。
(e) X線結晶構造解析：タンパク質の単結晶を作製し、これにX線を照射して回折データを収集、コンピューター解析により電子密度図を得て、結晶中のタンパク質の原子レベルでの構造を決定する。他に、二次元 NMR スペクトルを用いる構造解析、クライオ電子顕微鏡を用いる構造解析法がある。
(f) セリン：Ser（S）、ヒスチジン：His（H）、アスパラギン酸：Asp（D）