1．

図1のように、質量がなく伸びない糸が半径Rの円輪の外周に巻きつけられ、円輪から出た糸の先端には質量mの質点がつながれている。円輪はxOy平面に固定されており、円輪の中心Oを通る水平線をx軸、Oを通る鉛直線をy軸とし、y軸下方に重力が働いている。質点は、xOy平面内で振られることで、円輪から糸をほどいたり、巻きついたしたりすることで振り子のように運動している。x軸が正方向で円輪と交わる点をA、糸が円輪から離れる点を接点Bとし、OAとOBがなす角をθとする。ここで、糸が円輪からほどけたときのθを正、巻き付いたときのθを負とする。また、質点が鉛直下方にあるとき（$\theta = 0$のとき）の質点から輪までの距離をlとする。糸はたるむことはなく、円輪から大きさほどけたり、巻き付いたりしない。重力加速度をgとして、以下の問いに答えなさい。

図1

(1) 任意のθでの振り子の糸の長さ（Bから質点までの距離）を求めなさい。
(2) 点Oを基準として、質点の座標を直交座標で求めなさい。
(3) 質点の動エネルギーを$m, l, R, \theta, \dot{\theta}$を用いて表しなさい。ただし、$\dot{\theta} = d\theta/dt$
(4) $y = 0$での位置エネルギーを0として、質点の位置エネルギーをm, l, R, θ, gを用いて表しなさい。
(5) 質点の運動に関するラグランジアンを$m, l, R, \theta, \dot{\theta}, g$を用いて表しなさい。
(6) 問(5)で求めたラグランジアンを使って、θに関する運動方程式を立てなさい。
(7) lがRに比べて非常に長く（$l \gg R$）、質点の振動が微小であるとき（$|\theta| \ll 1$とし、$\sin \theta \approx \theta, \cos \theta \approx 1$と近似できるとき）の振動の周期を求めなさい。
2.

図 2(a) に示したように、厚さが無視できる半径 a の十分に長い導体円筒 A と半径 b の十分に長い導体円筒 B を中心軸を同じくするように真空中に配置した。ただし a < b とする。二つの導体に等しい電荷をゼロにした場合、円筒 A の上端と円筒 B の上端の間に定電圧源を挿入し、円筒 A の電位が高くなるように定電圧 V を印加した。この時、円筒 A に中心軸方向の単位長さあたり λ の電荷が生じた。真空の誘電率を ε₀とする。以下の問いに答えなさい。

(1) 中心軸からの距離を r とする。次の三つの領域における電場の大きさを答えなさい。
 (i) 円筒 A の内側の真空領域 (0 < r < a), (ii) 円筒 A と円筒 B に挟まれた真空領域 (a < r < b), (iii) 円筒 B の外側の真空領域 (b < r)。

(2) 電位差 V を ε₀, a, b, λ を用いて答えなさい。

(3) 中心軸方向の単位長さあたりの二つの円筒間の静電容量 C を答えなさい。

次に、上端に挿入した定電圧源はそのままにして、円筒 A の下端と円筒 B の下端の間に抵抗を挿入し電気的な回路をつくり、中心軸方向に定電流 I を流した。真空の透磁率を μ₀とする。以下の問いに答えなさい。

(4) 中心軸からの距離を r とする。次の三つの領域における電位の大きさを答えなさい。
 (i) 円筒 A の内側の真空領域 (0 < r < a), (ii) 円筒 A と円筒 B に挟まれた真空領域 (a < r < b), (iii) 円筒 B の外側の真空領域 (b < r)。

(5) 中心軸方向の単位長さあたりの磁場のエネルギーを答えなさい。ただし、円筒の衝突部分に生じた磁場を、その厚さが無視できるので、考えないこととする。

(6) 中心軸方向の単位長さあたりのインダクタンス L を答えなさい。

次に、定電圧源と抵抗をとりはずし、円筒 B を接地し、円筒 A の一端に時間変化する電圧を与えたところ、電圧と電流が中心軸方向に伝播した。この伝播を考えるために、二つの導体円筒を、図 2(b) に示したように、長さが微小な Δx, 静電容量が C Δx, インダクタンスが L Δx の回路の繰り返しで近似する。中心軸を x 軸、円筒 A 上のある点の電圧を V(x), x 軸方向に流れる電流を I(x), そこから x 軸に沿って Δx だけずれた点の電圧を V(x + Δx), 電流を I(x + Δx) とする。反射波の影響を考えないこととし、以下の問いに答えなさい。
(7) 以下の文の(i)と(ii)には、それぞれCまたはLが入る。どちらが入るか答えない。

\[V(x + \Delta x) - V(x) \approx \frac{\partial V}{\partial x} \Delta x \]

\[I(x + \Delta x) - I(x) \approx \frac{\partial I}{\partial x} \Delta x \]

t かがる。ここで \(\Delta x \to 0 \) の極限を考えると、\(\frac{\partial V}{\partial x} = \frac{\partial I}{\partial t} \) となる。同様にして、\(x \) と \(x + \Delta x \) の間での電流変化は、\(I(x + \Delta x) - I(x) \approx \frac{\partial I}{\partial t} \Delta x \) とおける。再び \(\Delta x \to 0 \) の極限を考えると、\(\frac{\partial I}{\partial t} = \frac{\partial V}{\partial x} \)

(8) 問(7)より電圧に関する波動方程式を導きなさい。

(9) 問(8)より電圧の伝わる位相速度 \(v \) を \(C \) と \(L \) を用いて答えなさい。

(10) 問(3)と問(6)で導いた \(C \) と \(L \) を問(9)の解答に代入し、\(a, b, \epsilon_0, \mu_0 \) のうち必要なものを用いて位相速度 \(v \) を答えなさい。

(11) 電圧の伝わる位相速度 \(v \) は光速の何倍か答えなさい。
3.

質量 \(m \)，角振動数 \(\omega \) をもつ古典的な 1 次元調和振動子を考える。ハミルトニアン \(H \) は、一般座標 \(q \)，一般運動量 \(p \) の関数として

\[
H(q, p) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2
\]

と表される。

(1) この系の分配関数 \(z_1^d \) を以下の式に従って計算しなさい。

\[
z_1^d = \frac{1}{2\pi \hbar} \int dq dp \exp \left\{ -\frac{H(q, p)}{k_BT} \right\}
\]

ここで \(T \) は温度、\(k_B \) はボルツマン定数、\(\hbar \) はプランク定数を 2\(\pi \)で割った定数を表す。ただし、必要であれば以下の積分公式を用いてもよい。

\[
\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}, \quad (a > 0)
\]

(2) \(N \) 個の独立した 3 次元調和振動子からなる系を考えると、分配関数 \(Z^d \) は \(Z^d = (z_1^d)^N \) である。この系のヘルムホルツの自由エネルギーを \(\hbar, \omega, N, k_B, T \) を用いて表しなさい。

(3) 問 (2) の系の内部エネルギー \(U^d \) を \(z^d, k_B, T \) を用いて表しなさい。

(4) 問 (2) の系の内部エネルギー \(U^d \) と比熱 \(C^d \) を \(\hbar, \omega, N, k_B, T \) のうち必要なものを使って表しなさい。

次に、角振動数 \(\omega \) をもつ 1 次元調和振動子を量子力学的に考える。調和振動子のエネルギー固有値 \(\varepsilon_n \) は、

\[
\varepsilon_n = \hbar \omega \left(n + \frac{1}{2} \right), \quad n = 0, 1, 2, \ldots
\]

である。ここで \(n \) は量子数を表す。

(5) この系の分配関数 \(z_1^{qn} \) を以下の式に従って計算しなさい。

\[
z_1^{qn} = \sum_{n=0}^{\infty} \exp \left(-\frac{\varepsilon_n}{k_B T} \right)
\]

ただし、必要であれば以下の無限等比級数の和の公式を用いてもよい。

\[
\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}, \quad (|r| < 1)
\]
(6) N 個の独立した 3 次元調和振動子からなる系を考えると、この量子系の分配関数 Z^n は $Z^n = (Z^n_1)^3$ である。この系のヘルムホルツの自由エネルギーを \hbar, ω, N, k_B, T を用いて表しなさい。

(7) 問 (6) の系の内部エネルギー U^n と比熱 C^n を \hbar, ω, N, k_B, T のうち必要なものを用いて表しなさい。

以上の結果より、古典系と量子系の違いを考える。

(8) U^d と U^n の低温極限 ($T \to 0$) の値 U^d_{low}, U^n_{low} をそれぞれ答えなさい。また、U^n_{low} の物理的な意味を答えなさい。

(9) C^d と C^n を温度 T の関数として概形を図示しなさい。その際、高温および低温極限でのふるまいを明らかに示すこと。
4. スピン演算子 $\hat{S} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ が交換関係

\[[\hat{S}_x, \hat{S}_y] = i\hbar \hat{S}_z, \quad [\hat{S}_y, \hat{S}_z] = i\hbar \hat{S}_x, \quad [\hat{S}_z, \hat{S}_x] = i\hbar \hat{S}_y \quad (\hbar \text{はプランク定数を} 2\pi \text{で割った定数}) \]

を満たすとして、以下の問いに答えなさい。

(1) 演算子 $\hat{S}_\pm = \hat{S}_x \pm i\hat{S}_y$ に対して，$[\hat{S}_z, \hat{S}_\pm] = \pm \hbar \hat{S}_\pm$ となることを示しなさい。

(2) 演算子 $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$ は \hat{S}_\pm を用いて

\[\hat{S}^2 = \frac{1}{2}(\hat{S}_+\hat{S}_- + \hat{S}_-\hat{S}_+) + \hat{S}_z^2 \]

と表されることを示しなさい。

(3) 大きさ $\frac{\hbar}{2}$ のスピンの状態を，\hat{S}_z の正規化された固有状態 $|\pm\rangle$ を使って表す。この固有状態は以下の方程式を満たす。

\[\hat{S}_+|\pm\rangle = \pm \frac{\hbar}{2} |\pm\rangle, \quad \hat{S}_-|\pm\rangle = 0, \quad \hat{S}_z|\pm\rangle = \hbar |\pm\rangle \]

これらの関係式を用いて，$|\mp\rangle$ が \hat{S}^2 の固有状態であることを示し，その固有値を求めなさい。

大きさ $\frac{\hbar}{2}$ の2つのスピン演算子 \hat{S}_1, \hat{S}_2 を用意し，それらのスピンの合成 $\hat{S} = \hat{S}_1 + \hat{S}_2$ を考える。ただし，\hat{S}_1 と \hat{S}_2 は交換する。

(4) \hat{S}_1, \hat{S}_2 の固有状態をそれぞれ $|\pm\rangle_1, |\pm\rangle_2$ としたとき，直積状態 $|\pm\rangle_1|\pm\rangle_2$ が演算子 \hat{S}_z の固有状態であることを示し，その固有値を求めなさい。

(5) 下の状態 $|X\rangle$

\[|X\rangle = |\pm\rangle_1|\mp\rangle_2 - |\mp\rangle_1|\pm\rangle_2 \]

が演算子 \hat{S}_z の固有状態であることを示し，その固有値を求めなさい。

2つのスピン間の相互作用が $\hat{H} = A \hat{S}_1 \cdot \hat{S}_2$ で与えられたとする。ただし，A は定数とする。

(6) 状態 $|X\rangle$ が \hat{H} の固有状態であることを示し，その固有値を求めなさい。