1. 次の微分方程式を解け。

(1) \[\frac{dy}{dx} - \frac{2}{x} y = - \sin 2x / y^2 \]

(2) \[\frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 9y = \frac{x}{2} \]

(3) \[\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + 10y = \sin x \]

2. ベクトル場 \(A = (x^2 z, yz, z^2) \) と曲面 \(S_1 : x^2 + y^2 + z^2 = 4, \ x \leq 1 \) と曲面 \(S_2 : x^2 + y^2 \leq 3, \ z = 1 \) を考える。\(n \) を閉曲面 \(S = S_1 \cup S_2 \) の外向き単位法線ベクトルとする。次の問いに答えよ。

(1) \(\text{div} A \) を求めよ。

(2) \(\iint_{S_2} A \cdot n \, dS \) の値を求めよ。

(3) \(\iint_{S_1} A \cdot n \, dS \) の値を求めよ。

3. 次の問いに答えよ。

(1) 積分 \(\int_0^\pi \frac{\cos \theta}{3 - 2 \cos \theta} \, d\theta \) の値を求めよ。

(2) 積分 \(\int_C \frac{\sin x}{x^n} \, dx \) （\(n = 1, 2, 3, \ldots \)）を求めよ。

ただし、\(C \) は複素平面上の正の向きを持つ原点 \(O \) を含む単一閉曲線である。

4. 次の問いに答えよ。

(1) 関数 \(F(s) \) に対するラプラス逆変換 \(f(t) = \mathcal{L}^{-1}[F(s)] \) で表すとき、\(\mathcal{L}^{-1} \left[\frac{1}{s(s^2 + 1)} \right] \) を求めよ。

(2) 次の方程式の初期値問題

\[\frac{d}{dt} x(t) - x(t) \cdot e^{-t} = 1, \quad x(0) = 1 \]

をラプラス変換を用いて解け。ただし、\(f(t) \cdot g(t) = \int_0^t f(t-\tau) g(\tau) \, d\tau \) は関数 \(f(t), g(t) \) の合成積とする。