機械科学専攻	研究分野	知的材料システム	Lab. ID MS27
研究室Webサイト	http://hydro	gen.w3.kanazawa-u.ac.jp	-
研究課題の概要			
現在、本研究室では以下の研究テーマに取り組んでいます。 (1) 水素分離・精製のためのNb基複相合金の微細組織と水素透過性 (2) Mg基合金の水素吸蔵による構造変化 (3) 次世代構造用金属として注目されている超微細粒材料、ハイエントロピー合金、ミルフィーユ構造物質の力学特性 (4) 金属材料の組織と各種特性(力学、電気)の関連と測定手法への応用 博士前期課程/後期課程院生の指導方針、具体的なカリキュラム、研究室での活動等 毎週開催される研究室ゼミにて、自分の研究について状況を報告し、研究室全体で議論を行います。研究成果は、毎年開催される関連学会の講演大会で発表します。			
研究室生活の紹介等			
研究室では、アーク溶解炉、電子顕微鏡、X線回折装置などを自由に使用することができます。 学生用のPCは、一人一台ずつ準備されています。 外部の大型施設(SPring-8, J-PARK)等に行くこともあります。			
可欠な研究・勉学に没頭出来る環境を	提供します。	とを目的に、材料の研究を通して教育を行います。 研究室配属の学生さんは、学業に専念することが	求められま
す。研究室生沽を通じ、①研究計画、(2) 研究逐行、	③考察、④検証のサイクルを独力で実行する力を!	身に付けてく

ださい。 研究室配属後は、学業に専念するのは当然として、卒業後に求められる社会常識等も同時に身につけてください。 (宮嶋)

最近(過去3年間+必要に応じて)の修士論文題目				
12	タイトル			
2021.9	Structural Change of Nb-TiNi Alloy with Mille-feuille Structure by Hydrogenation (ミルフィーユ構造を有するNb-TiNi合金の水素化による構造変化)			
2021.3	ハイスピードカメラを用いた超微細粒材の高速変形中の観察及び解析			
2021.3	ミルフィーユ構造を有するNb基合金の微細組織および機械的性質			
	ハイエントロピー合金の圧延に伴う材料組織、機械特性、電気特性の変化			
	FeWを添加したNb ₄₀ Ti ₃₀ Ni ₃₀ 合金の水素透過特性			
	Nb ₁₉ Ti ₄₀ Ni ₄₁ 合金の微細組織と水素透過性に対する圧延・熱処理の影響			
2018.3	Nb ₁₉ Ti ₄₀ Ni ₄₁ 水素透過合金の水素化特性と構造変化			
2018.3	Powder Bed Fusion法を用いた並列型Nb−TiNi複相水素透過膜の創生			
2018.3	LPSO(長周期積層規則)相を含むMg基合金の水素化と構造変化			
2017.3	V−TiNi合金の水素化に伴う構造変化と微細組織との関連性			
2017.3	Wを添加したNb系複相合金の水素透過特性			
	Nb-Ti(Ni, Co)水素透過合金の水素雰囲気下での構造変化と水素吸蔵特性			
2016.3	長周期積層規則(LPSO)構造を有するMg基合金の水素吸放出特性と構造変化			
2016.3	V-TiNi合金の水素透過性及び冷間圧延性に及ぼす微細組織の影響			
2015.3	.3 Pd-Ag-Cu三元系合金の組織と水素透過特性			
2015.3	2015.3 長周期積層規則(LPSO)構造を有するMg基合金の水素化特性			
2014.3 Nb系複相水素透過合金の微細組織と水素透過度				
2014.3 複相水素透過合金の水素中での構造変化				
最近(過去3年間+必要に応じて)の博士論文題目				
修了年月	タイトル			
2021.9 二次元検出器方式X線応力測定法による粗大結晶粒材料の測定精度向上に関する研究				
2017.3	Nb系水素透過合金の水素化に及ぼす複相化効果に関する研究			
研究室連絡先メールアドレス				